Recognition Opportunities on Science Hill
3 New Resources for Yale’s Science Enterprise

11 New Construction and Renovation on Science Hill

YALE SCIENCE BUILDING

YALE WRIGHT LABORATORY

UNDERGRADUATE TEACHING LABORATORIES:
STERLING CHEMISTRY LABORATORY

COMMUNITY SPACES

CENTER FOR SCIENCE AND SOCIAL SCIENCE INFORMATION

47 Recognition Opportunities
New Resources for Yale’s Science Enterprise
Architect’s rendering of the Yale Science Building
Endowing Research at Yale

Yale University is a research powerhouse, eminent in every area of the humanities, arts, social sciences, science, engineering, and medicine. Sustaining this leadership requires ongoing investments in faculty and students, along with the programs, facilities, and equipment that support their work.

Within this greater research enterprise, Yale has renewed its commitment to the advancement of scientific discovery and education. With the support of donors, the university aims to build its research endowment, which generates funding for faculty support, program needs, equipment, and facilities. In addition, Yale has launched an ambitious series of new construction and renovation projects that will elevate and expand its capacity for science research and teaching.

Nowhere is this work more evident than on Science Hill, where a series of high-profile projects is transforming science laboratories, teaching spaces, and community spaces. Together, the architecturally distinctive buildings and grounds of Science Hill support a diverse community of top minds linked to every area of the university and united in the common pursuit of scientific knowledge and discovery.

A PERMANENT RESOURCE FOR SCIENCE
Donor support of Yale’s research endowment is essential to advancing key goals:

• To support world-class researchers in the sciences
• To provide superb undergraduate laboratory spaces that reflect Yale’s essential teaching mission
• To promote a collaborative and inspiring environment for scholars, researchers, and students
• To enable discovery-based research
• To ensure state-of-the-art research technology

RECOGNIZING YOUR GENEROSITY
This booklet presents recognition opportunities for donors to Yale’s research endowment through the naming of spaces associated with key projects on Science Hill:

• Construction of the new Yale Science Building
• Renovation of Wright Laboratory
• Creation of undergraduate science teaching facilities in the Sterling Chemistry Laboratory
• Addition of community spaces—including a pavilion and café and renewed outdoor spaces—for students, scientists, and the greater Yale community

Gifts to the University Library endowment may be recognized within the Center for Science and Social Science Information.
Over 300 years, Yale has made immeasurable contributions to research and education in the physical sciences, biomedical sciences, mathematics, and engineering. Today, Yale scientists lead the world in genomics and proteomics, human genetics, computational biology, biomedical engineering, nanotechnology, and quantum computing. Yale researchers and clinicians break new ground in cancer, neurological disorders, and cardiovascular disease. Continuing excellence is fundamental to Yale’s mission of improving the world and educating leaders.

In 2016, President Peter Salovey established the University Science Strategy Committee (USSC) to identify Yale’s most promising opportunities for investment across the sciences. The faculty-led committee solicited input from schools, departments, and thought leaders campus-wide, deliberating over a period of eighteen months. In November 2018, President Salovey accepted the report of the USSC and set into motion its key recommendations.

The USSC’s recommendations include areas where the university can build on existing strengths across disciplines, departments, and schools to discover new knowledge about the natural world, solve pressing technological and scientific challenges, seek new opportunities in education, and advance research. In addition, the report suggested four cross-cutting investments—restructuring funding for graduate students, diversity throughout the STEM pipeline, instrumentation development, and core facilities.

Over the last five years, Yale has invested significantly in buildings and core facilities. In addition to facilities described in this booklet, these include the Greenberg Engineering Teaching Concourse; West Campus science institutes; the Peabody Museum; the Magnetic Resonance Research Center; the Center for Research Computing; the Lab for Surgery, Obstetrics and Gynecology; and others. These projects, along with spaces for innovation and entrepreneurship initiatives, underscore Yale’s focus on supporting excellence in science research and education.

Donor support of the research endowment will help Yale stay at the forefront of discovery and fulfill its mission to improve the world through teaching and research.
<table>
<thead>
<tr>
<th>5 Nobel Prizes</th>
<th>$500 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>since 1968</td>
<td>National Institutes of Health funding in 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>59 Members</th>
<th>$155 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Academy of Sciences (plus 2 affiliates)</td>
<td>National Science Foundation funding in 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>46 Members</th>
<th>200,000+</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Academy of Medicine (formerly Institute of Medicine)</td>
<td>citations by peer research since 2006</td>
</tr>
</tbody>
</table>
Yale University is home to world-class research and teaching in the sciences, supported by state-of-the-art equipment and facilities. Yale's science enterprise spans the entire campus, with hubs of concentrated activity on West Campus, the medical campus, central campus, and Science Hill. The map detail (opposite) highlights renovation and new construction projects on Science Hill.
Leadership contributions to Yale’s endowment may be recognized with the naming of selected spaces on Science Hill.

CSSSI Center for Science and Social Science Information

P Pavilion

SCL Sterling Chemistry Laboratory

WL Wright Laboratory

YSB Yale Science Building
New Construction and Renovation on Science Hill

Note: Architect’s renderings of building exteriors and interiors reflect initial design concepts and are subject to change.
Rendering of the Yale Science Building and O.C. Marsh Lecture Hall entrance, as seen from Whitney Avenue
Yale Science Building

Overview

The Yale Science Building combines modern laboratories with abundant spaces for interaction—including below-ground connections to other buildings on Science Hill—encouraging the frequent encounters among colleagues that are so vital to interdisciplinary research. In addition to laboratories, the building features a lecture hall, and a new café/study lounge in the adjacent pavilion will serve as Science Hill’s first gathering place for undergraduates, faculty members, and researchers.

The world renowned firm of Pelli Clarke Pelli Architects has designed the Yale Science Building as a multifunctional laboratory facility. When it opens in August 2019, the Yale Science Building will house the entire Department of Molecular, Cellular, and Developmental Biology (MCDB), along with some members of the departments of Molecular Biophysics & Biochemistry (MB&B) and Physics. A new multidisciplinary Quantitative Biology Institute will also be housed in the building, serving as a hub for creative, cross-disciplinary interactions. In addition, the building will support exciting opportunities for undergraduate research.

Researchers will have access to state-of-the-art laboratories and shared instrumentation cores supporting fundamental work in the life sciences.

Leadership gifts directed to Yale’s research endowment may be recognized with the naming of spaces within the Yale Science Building.
A rendering of the Yale Science Building, as seen from the plaza.

A rendering of the Yale Science Building, as seen from Whitney Avenue.
Building on the university’s strength in cross-disciplinary research, the Yale Science Building will enable the advancement of research and discovery in areas that will have immediate and longer-term impacts on human health and wellbeing: examples include the identification of new antibiotics and personalized cancer treatments, advancements in limb regeneration, breakthroughs in insect-borne diseases, and the creation of sustainable agriculture.

Transformative scientific discoveries are most often achieved by teams of scientists, postdoctoral fellows, and graduate students, working across disciplines to bring varied skills and perspectives to bear on fundamental challenges. With this in mind, the Yale Science Building will provide state-of-the-art research space and direct physical connections between the biological sciences, as well as increased connectivity with physics and chemistry. Its proximity to other centers of research on Science Hill will also foster new opportunities for interdisciplinary collaborations, accelerating the discovery process.

The building incorporates both teaching and social spaces, including the O.C. Marsh Lecture Hall and a new glass-enclosed pavilion suitable for informal gatherings and catered events (see page 37 for more details). These features will become a central focal point for scientists and students, creating a more interactive Science Hill that will serve the broad science and technology community.
A rendering of a typical laboratory in the Yale Science Building

The state-of-the-art laboratories are configured to maximize collaboration among investigators, post-doctoral fellows, and graduate students.

A rendering of a lounge

Social spaces are essential to collaborative research, bringing together faculty members and students within and across departments.
MAIN INVESTIGATOR SPACES

Biology Laboratories: The Yale Science Building will unite the entire Department of Molecular, Cellular, and Developmental Biology (MCDB) within one site, in addition to providing lab space for a portion of the MB&B faculty and the new Quantitative Biology Institute. A total of forty-five investigator-based labs will be housed in the new building. While the traditional bench is still an essential feature of research, laboratory support space is equally important, because investigations frequently rely on custom-designed equipment. The facility utilizes a modular design, offering the capacity to change a specific lab’s functionality by simply switching out or repurposing existing equipment. In addition, the laboratories capitalize on their proximity to the Bass Center for Molecular and Structural Biology through the addition of multiple connections above and below ground.

Physics Laboratories: A vibration-free bedrock space will allow physicists, biophysicists, and astronomers to conduct sophisticated atomic, molecular, and optical research in laboratories specifically designed for advanced instrumentation. Biologists will work just down the hall, affording opportunities to bridge the study of fundamental physics and biology at a molecular, cellular, and organism level.

The Quantitative Biology Suite: This cluster of laboratories supports researchers in the Quantitative Biology Institute as they work to integrate experimental, theoretical, and computational approaches from biology, physics, chemistry, engineering, computer science, and mathematics. The QBio Institute aims to discover the fundamental mechanisms underlying the evolving spatial and dynamical organization of biological systems. Research will bridge scales from molecules, to cells, to organisms.
A rendering of a computational laboratory

Combining the tools of experimental science, computer modeling, and bioinformatics, the QBio Institute will tackle a range of urgent questions in the life sciences.
Biology Core Facilities

Plant Science Center: The Plant Science Center will reflect the ongoing research and training interests of faculty members in the molecular genetics of flowering, the developmental biology of leaves, the physiology of hormone action, and the evolution of plants. The center will house state-of-the-art greenhouses, including a comprehensive suite of climate-controlled growth chambers that support a wide range of research investigations. Located on the roof of the Yale Science Building, the greenhouses will be a prominent physical feature of the new facility.

Biovisualization Imaging Center: Technological advances are rapidly increasing our understanding of structural biology, a long-standing strength at Yale. Our ability to visualize and image is essential to research in neurobiology, cell biology, and developmental biology. In the new facility, instructional spaces for the preparation and study of biological samples will be adjacent to one another. These spaces will employ the most advanced imaging technology, ranging from confocal microscopes to cryo-electron microscopy, enabling scientists to discern the detailed functioning of molecules at near atomic resolution. They will also allow scientists to explore the inner workings of cells and the interactions of cells in a network. A variety of imaging techniques will be accommodated in the new imaging center, helping scientists understand these interactions, expanding our basic knowledge of biology, and leading to new disease treatments.

Insectary for Global Solutions: Yale insect research is essential not only for basic research in biology, but also for the advancement of global health. Each year hundreds of millions of people are afflicted by diseases transmitted by insect vectors: mosquitoes (*Anopheles*), which transmit malaria; yellow fever mosquitoes (*Aedes aegypti*), which transmit zika and dengue virus; and tsetse flies (*Glossina*), which transmit African sleeping sickness. These diseases are likely to have an increasing effect on the United States and other developed countries as the range of many insect vectors extends northward due to warming temperatures. A state-of-the-art insect facility will advance Yale to a leadership position in the study of how these diseases are transmitted.
The main entrance to the newly renovated Wright Laboratory.
In 2014, Yale launched a complete renovation of the Yale Wright Laboratory. The unique structure, which formerly housed Yale’s particle accelerator and related laboratories, is outfitted for cutting-edge research on neutrinos and dark matter. The updated laboratory reopened in fall 2016.

A complete interior redesign incorporates state-of-the-art technical facilities as well as shared social spaces and meeting rooms. The new laboratories and common spaces are designed to foster the onsite interaction of scientists, students, and technical personnel, as well as remote collaborations with researchers at experimental facilities in Switzerland, China, Italy, and Antarctica, to name a few.

The renovated building features cleanrooms, high-bay spaces, and cryogenic facilities that support both fundamental research and teaching. Three machine shops, including an advanced prototyping room with CAD-based design capability, allow researchers and students to learn and practice the principles of design and prototyping and support a rapid cycle of innovation. Students in the departments of physics and chemistry use the new teaching and training shop as a center for instruction. The professional machine shop supports the fabrication of instrumentation for experiments at Yale and at facilities worldwide.

Leadership gifts directed to Yale’s research endowment may be recognized with the naming of spaces within the Yale Wright Laboratory.
The entry lobby features a display screen that welcomes visitors.

In the collaboration area, faculty offices and meeting rooms are grouped around a comfortable lounge area, lit by skylights.
Advancing the frontiers of physics through a broad research program focused on the study of neutrinos, the search for dark matter, and tests of fundamental symmetries of the universe, the Yale Wright Laboratory aims to address foundational questions about the properties of matter and the structure of the invisible universe. The recently completed renovations modernized the facilities for research and education, resulting in a first-of-its-kind, university-based infrastructure for innovation in the fields of nuclear, particle, and astrophysics that is otherwise available only in the largest national laboratories.

The research program of the Yale Wright Laboratory encompasses a broad portfolio of research, with experiments ranging from tabletop efforts like the ADMX-HF axion search at Yale to worldwide collaborations such as ATLAS at the Large Hadron Collider in Geneva, Switzerland. Faculty members and researchers are pursuing the study of diverse phenomena, including the structure of matter in nuclear physics, the interactions and forces between elementary particles, and the observation of galaxies and structures in the universe at the cosmic scale. Together, these studies form a comprehensive approach to understanding fundamental questions about the nature of matter, its interactions, and its role in the evolution of the universe.

Located on Science Hill, the Wright Laboratory is firmly embedded in the intellectual and teaching environment of Yale. This rich setting enables an integrated path to discovery—from the conceptual idea, to the design and construction of specialized experimental equipment—and the pursuit of novel fundamental research.
Clean rooms provide an environment for the assembly of sensitive equipment.

High-bay spaces are well suited to the assembly and operation of large-scale detectors.

Several instrumentation rooms are equipped with boom cranes.

A professional machine shop supports the design and fabrication of custom-built scientific instruments.
Shared Instrument Rooms

The recent renovations to the Wright Laboratory have created infrastructure in support of a scientific research program in fundamental physics. The new facilities include specialized laboratory spaces for instrumentation design, development, and testing; cryogenic facilities; a low-background counting room; and high-bay spaces for detector assembly. Individual recognition opportunities include the clean room, the cryogenic laboratories, and the detector characterization laboratories, which serve faculty members, postdoctoral fellows, and graduate students across the department.

The Advanced Prototyping Center (APC) is the newest shared facility in the Wright Lab, available to the Yale community for teaching, learning, and research. The state-of-the-art lab space supports computer-aided design (CAD), prototyping, and fabrication of custom parts in a range of materials, with technology that includes a water-jet cutter, a laser cutter, and several 3D printers.

In addition, a professional machine shop occupies the space that previously housed the particle accelerator. The shop supports the construction of specialized equipment, including very large instruments and detectors that support research on the nature of matter, its interactions, and its role in the evolution of the universe. Much of this equipment is shipped to experimental stations operated by Yale and other institutions around the world.
The teaching and training shop is used by undergraduates in the chemistry, biology, physics, and engineering departments.

The Advanced Prototyping Center supports prototyping and fabrication of custom equipment for scientific research.
TEACHING SPACES
Located on the first floor of Wright Laboratory, the teaching and training shop provides a safe environment for students to learn the necessary skills to build and operate experimental equipment. Under the supervision of faculty and professional staff, the facility consolidates shops formerly used by undergraduate and graduate students in buildings throughout Science Hill.

SHARED SPACES
With a large skylight, open spaces, and glass-walled offices, the atrium is designed to support both formal gatherings and informal interactions between faculty members and students. The atrium features a comfortable lounge area, as well as access to two seminar rooms. Meeting rooms and remote conferencing facilities enable researchers to interact both locally and with collaborators at experimental facilities in Switzerland, China, Italy, and Antarctica. In addition, these rooms can be configured to host seminars, tutorials, and workshops for specialized training and education of students and researchers.
A third-floor chemistry teaching laboratory includes fume hoods for every student.
Since 1923, Sterling Chemistry Laboratory (SCL) has served the chemistry department as a center for teaching and research. Today, the Gothic structure has been transformed into a state-of-the-art space for instruction in biology, chemistry, and physics. An upward expansion has added a new floor, and changes throughout the building have allowed for improvements to teaching and research space, accessibility, safety, and lab support, along with upgraded offices and student common areas.

SCL renovations encompass 159,000 square feet, of which 31,600 square feet is new space. The building is LEED Gold certified.

The renovation incorporates expansive, well-lit corridors to connect the labs with communal areas and a landscaped courtyard. The use of glass walls to frame the labs is intended to inspire more collaboration among students and faculty.

Designed by the architectural firm CannonDesign, the SCL expansion has proceeded in phases since 2013. The new biology and chemistry teaching laboratories opened in August 2016. The physics teaching laboratory opened in January 2017.

Leadership gifts directed to Yale’s research endowment may be recognized with the naming of spaces within the Sterling Chemistry Building.
A biology classroom, part of the second-floor suite of teaching laboratories. The flexible configuration allows the space to adapt to a variety of experiments and teaching needs.

Lecture Hall 110 is one of two large lecture rooms on the second floor.
NEW SPACES FOR STUDENT LEARNING AND DISCOVERY

At the core of the SCL renovation are the new undergraduate teaching laboratories, designed to support hands-on learning in chemistry, biology, and physics and to encourage collaboration among the disciplines.

The new third floor houses three general chemistry and two organic chemistry laboratories, in addition to space intended for advanced chemistry investigations. State-of-the-art equipment includes individual venting hoods for each student conducting an experiment.

The second floor features ten teaching laboratories focused on biology:
- Three laboratories for molecular, cellular, and developmental biology
- Two laboratories for molecular biology and biochemistry
- Two laboratories for genetics
- A laboratory for neurobiology
- A laboratory for nucleic acids and cell biology
- A laboratory to support ecology and evolutionary biology field classes

Additional teaching laboratories on the second floor focus on physics. Two open areas are designed for flexible experimental setups that can be reconfigured over the course of a semester. A series of dedicated rooms and alcoves are designed for specialized experiments, covering a spectrum of topics including optics, electrostatics, acoustics, nuclear physics, and superconductivity. A small classroom is used for pre-lab tutorials and discussions. A laboratory for physical chemistry is also located on the second floor.

In addition, the two large lecture halls on the second floor of SCL have been thoroughly modernized, providing ample room for larger classes.
The third floor student lounge. This space looks onto the plaza between SCL and Kline Chemistry Laboratory.

The central corridor on the third floor of SCL. Glass walls on either side provide views into the undergraduate chemistry teaching laboratories.
PUBLIC SPACES
Community and faculty/student interactions are central to the design of the SCL renovation. Classrooms and teaching laboratories are interspersed with communal spaces, making collaboration and teamwork a natural part of moving through the building.

On the second and third floors, student lounges provide social space as well as collaborative learning areas for undergraduates. These lounges, along with laboratory spaces, are equipped with Wi-Fi, allowing for high-speed internet access. With an adjacent vending machine area, the lounges have whiteboards that promote interactions and allow students to share ideas with one another.

The renovation has also created a landscaped plaza between Sterling Chemistry Laboratory and Kline Chemistry Laboratory. This beautiful public space serves both as a destination in its own right and a major pedestrian thoroughfare.
A rendering of the new pavilion connecting Kline Tower to the Yale Science Building
Community Spaces

OVERVIEW

In an era of interdisciplinary science, a strong community is essential to Yale’s continuing leadership in science research and teaching. Supporting this ideal, the new building and renovation projects now unfolding on Science Hill have been designed to attract and engage greater numbers of students, researchers, faculty members, and the public, with the goal of making Yale’s premier science campus a destination in its own right. Several architecturally significant spaces and landscapes will anchor Science Hill, link it more closely to the rest of campus, and support a range of formal and informal gatherings.

Leadership gifts directed to Yale’s research endowment may be recognized with the naming of community spaces on Science Hill.
A rendering of the plaza, depicting a birds-eye view from above the Bass Center.

A rendering of the pavilion: Revealed through the glass, an open common area will incorporate a café and lounge serving faculty, students, and visitors. Above the café, the mezzanine will offer flexible program space.
PLAZA
The plaza is a landscaped court enclosed by the Bass Center, Yale Science Building, the pavilion, Kline Tower, and Sterling Chemistry Laboratory. Open areas of pavers and grass are bounded by gardens and clusters of comfortable seating and dining tables. The plaza is an important hub for pedestrian traffic linking the major research buildings on Science Hill and includes a below-grade court providing an entry into the concourse level of the Yale Science Building.

PAVILION
Serving as the social focus for Science Hill, with space for students and faculty alike, the pavilion will be a central hub for a range of scholarly and social interactions. The building will connect the new Yale Science Building to Kline Tower and the Center for Science and Social Science Information. The multi-level, glass-enclosed structure will provide space for catered events, informal gatherings, casual dining, group meetings, and individual study.

MEZZANINE
The upper level of the pavilion will be an open mezzanine designed to accommodate classroom instruction, study groups, and special activities.
The Young Family Study anchors the main entrance into CSSSI.
The Center for Science and Social Science Information (CSSSI) provides Yale faculty, students, and staff with state-of-the-art information services in a technology-rich environment, customized to meet the evolving needs of education and research. Located on the concourse level of Kline Tower, the center places particular emphasis on supporting students who are learning to curate and manage large datasets.

The CSSSI is first and foremost a space of collaboration among faculty, students, and researchers across schools and disciplines. Data librarians and consultants work closely with users to find, manipulate, analyze, and keep track of data. Students learn to access and use information from diverse sources: U.S. Census data, public opinion data, science data, and satellite imagery. They also have ready access to technical support, with tools for geographic information system, statistical analysis, data management, and high performance computing.

For many of these users, library resources and technology are closely intertwined in their academic work practices. The center has been designed to provide easily accessible support for science, social science, and interdisciplinary researchers. Equipped with a variety of workstations, meeting spaces, and technological resources, the center and its staff of professional librarians facilitate an interdisciplinary approach to solving complex problems. With rooms that vary from quiet, twenty-four-hour study spaces to a thirty-seat computer classroom, the CSSSI can accommodate a wide variety of research and study needs.

Since the CSSSI opened in January 2012, it has offered expanded and comprehensive information services to the Yale community. In light of the center’s popularity with students, the CSSSI underwent an expansion in 2017, converting under-used stacks into an additional reading room. This vital addition enables more students to utilize the center’s much sought-after resources.

Leadership gifts directed to University Library endowment may be recognized with the naming of spaces within the CSSSI.
The CSSSI information desk is a key access point for students wishing to take advantage of a technology-rich environment.

The versatile west reading room provides privacy for research, while its open floorplan encourages collaboration.

The east reading room is a destination for students working on individual or group projects.

The thirty-seat technology classroom offers a hands-on, technology-assisted learning space for faculty review sessions, staff training, and academic classes.
WEST READING ROOM
A large, comfortably appointed space, the west reading room places an emphasis on technology, with eighteen dual-monitor Mac and PC workstations, a Bloomberg terminal, scanners, and soft seats equipped with tablet arms for more informal research opportunities. Large, moveable whiteboards also support interactions among students and faculty.

This room is among the center’s most versatile and popular spaces: it provides privacy for research, while its open floorplan encourages collaboration. During the academic year, it is typically fully occupied by midmorning and remains so throughout the day.

EAST READING ROOM
The east reading room is a destination for students working on individual or group projects. The large space is equipped with a state-of-the-art, fifty-inch Microsoft Surface Monitor, as well as study tables, soft seats with tablet arms, and twelve workstations. The room also provides space for graduate students with strong data science expertise to advise researchers on data collection and analysis.

LOWER LEVEL READING ROOM
CSSSI expanded its program space for students by converting an extensive area of book shelving into an additional reading room. Like the existing reading rooms, this new room supports students working on individual or group projects. The large space is equipped with a state-of-the-art, fifty-inch Microsoft Surface Monitor, as well as study tables, soft seats with tablet arms, and workstations.

TECHNOLOGY CLASSROOM
This thirty-seat classroom offers a hands-on, technology-assisted learning environment, with dual-monitor computers at each seat, three fifty-inch video screens on one wall, and two projectors with screens on another. Whiteboards are available to supplement the digital array. With its variety of equipment, this room is ideal for faculty review sessions, faculty and staff training, and regular graduate and undergraduate classes. When not in use as a classroom, this room is available for individual or group study.
The director’s office and librarians’ offices are located off the east reading room, close to staff and student resources.

The three group study rooms contained within the CSSSI’s twenty-four-hour study space accommodate group work, review sessions, and journal clubs.

Each librarian’s office is equipped with writeable glass walls, inviting collaboration with students and fellow librarians.

Librarians use the staff conference room for small group meetings, project planning, video-conferencing with colleagues, webinars, and hosting visitors.
Director’s Office
The director’s office has a high profile within the CSSSI. Opening into the east study room, the office is close to staff and student resources, facilitating oversight of the library’s operations.

Staff Conference Room
The staff conference room is frequently used by librarians for small group meetings, project planning, video-conferencing with colleagues, webinars, and hosting visitors. The room seats six people around a conference table and has a wall-mounted flat-screen for presentations and video conferences.

Group Study Room
Three twenty-four-hour group study rooms provide space for collaboration and brainstorming in a focused environment and are frequently used for group work, review sessions, and journal clubs. Each is equipped to accommodate collaborative work, with a table, task chairs, a shareable dual screen computer (which can also be used to display work from multiple individual laptops), whiteboards, and writeable glass. The group study rooms seat up to six and may be reserved online.

Librarian’s Office
Ten librarian offices line one wall of the east study room, a location central to student and staff resources. Each office is equipped with writeable glass walls, inviting collaboration with students and fellow librarians.
Students and faculty members use the A/V studio for video and audio recording.

The lower level reading room accommodates students working on individual or group projects.

Located on the lower level of the CSSSI, the map room houses the university’s contemporary map collection.

A large conference table makes the seminar room an ideal space for instruction.
A/V STUDIO
The A/V studio provides a welcoming, private space for faculty, students, and staff to record lectures and other academic material. Equipped with acoustical sound barriers and technology for video and audio recording, the studio facilitates the creation of multimedia learning objects and presentations.

SEMINAR ROOM
The seminar room, centrally located on the lower level, is used for instruction, small conferences, exhibits, and group meetings for Yale faculty, students, and staff. It is equipped with a large-screen video display, lecture podium, and movable tables to accommodate a variety of arrangements.

MAP ROOM
The map room houses a collection of contemporary earth and celestial print maps and may be used for small group instruction sessions focused on the use of maps and geographic information systems. It is equipped with a large-screen workstation, a large-format scanner, and a large work table for map viewing. The room both provides access to Yale’s digital collection and includes ample work surfaces for researchers using the paper collections. Located on the lower level, the room features large glass windows looking out onto the lower level study area.
Recognition Opportunities on Science Hill
Recognition Opportunities

Gifts in support of Yale’s research endowment may be recognized with the naming of spaces in Yale Science Building, Wright Laboratory, and Sterling Chemistry Laboratory, along with community spaces on Science Hill.

<table>
<thead>
<tr>
<th>Yale Science Building</th>
<th>Wright Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>Teaching and Training Shop</td>
</tr>
<tr>
<td>Quantitative Biology Suite</td>
<td>Shared Instrumentation Space (6)</td>
</tr>
<tr>
<td>Plant Center</td>
<td>Atrium</td>
</tr>
<tr>
<td>Biovisualization Imaging Center</td>
<td>Entry Lobby</td>
</tr>
<tr>
<td>Insectary for Global Solutions</td>
<td>Advanced Prototyping Center</td>
</tr>
<tr>
<td>Biology Research Laboratory Space (multiple)</td>
<td>Director’s Office</td>
</tr>
<tr>
<td>Physics Research Laboratory Space (4)</td>
<td>Art installation</td>
</tr>
<tr>
<td>Rooftop Greenhouse</td>
<td>Seminar Room (2)</td>
</tr>
<tr>
<td>Large Meeting Room (2)</td>
<td>$200,000</td>
</tr>
<tr>
<td>Research Lounge (4)</td>
<td>$150,000–$200,000</td>
</tr>
<tr>
<td>Meeting Room (10)</td>
<td>$150,000</td>
</tr>
</tbody>
</table>
Recognition Opportunities

Gifts in support of Yale’s research endowment may be recognized with the naming of spaces in Yale Science Building, Wright Laboratory, and Sterling Chemistry Laboratory, along with community spaces on Science Hill.

Undergraduate Teaching Labs (SCL)

<table>
<thead>
<tr>
<th>Space</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaza</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Chemistry Teaching Lab (8)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Student Lounge (2)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Lecture Hall (2)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Biology Teaching Lab (12)</td>
<td>$750,000</td>
</tr>
<tr>
<td>Physics Teaching Lab</td>
<td>$500,000</td>
</tr>
<tr>
<td>Physics Teaching Station (8)</td>
<td>$150,000</td>
</tr>
</tbody>
</table>

Community Spaces

<table>
<thead>
<tr>
<th>Space</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaza</td>
<td>$25,000,000</td>
</tr>
<tr>
<td>Pavilion</td>
<td>$25,000,000</td>
</tr>
<tr>
<td>Mezzanine</td>
<td>$3,000,000</td>
</tr>
</tbody>
</table>

Gifts in support of Yale’s research endowment may be recognized with the naming of spaces in Yale Science Building, Wright Laboratory, and Sterling Chemistry Laboratory, along with community spaces on Science Hill.
Recognition Opportunities

Gifts in support of the University Library endowment may be recognized with the naming of spaces in the Center for Science and Social Science Information.

Center for Science and Social Science Information

<table>
<thead>
<tr>
<th>Space</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Science and Social Science Information</td>
<td>$5,000,000</td>
</tr>
<tr>
<td>West Reading Room</td>
<td>$500,000</td>
</tr>
<tr>
<td>Lower Level Reading Room</td>
<td>$300,000</td>
</tr>
<tr>
<td>East Reading Room</td>
<td>$300,000</td>
</tr>
<tr>
<td>Map Room</td>
<td>$200,000</td>
</tr>
<tr>
<td>Technology Classroom</td>
<td>$200,000</td>
</tr>
<tr>
<td>Director’s Office</td>
<td>$100,000</td>
</tr>
<tr>
<td>Seminar Room</td>
<td>$100,000</td>
</tr>
<tr>
<td>Group Study Room (3)</td>
<td>$50,000</td>
</tr>
<tr>
<td>Librarian’s Office (10)</td>
<td>$50,000</td>
</tr>
<tr>
<td>A/V Studio</td>
<td>$50,000</td>
</tr>
<tr>
<td>Staff Conference Room</td>
<td>$50,000</td>
</tr>
</tbody>
</table>